Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crosstalk between the Tor and Gcn2 pathways in response to different stresses.

Identifieur interne : 000F02 ( Main/Exploration ); précédent : 000F01; suivant : 000F03

Crosstalk between the Tor and Gcn2 pathways in response to different stresses.

Auteurs : Gro Elise R Dland [Norvège] ; Tonje Tveg Rd [Norvège] ; Erik Boye [Norvège] ; Beáta Grallert [Norvège]

Source :

RBID : pubmed:24280780

Descripteurs français

English descriptors

Abstract

Regulating growth and the cell cycle in response to environmental fluctuations is important for all organisms in order to maintain viability. Two major pathways for translational regulation are found in higher eukaryotes: the Tor signaling pathway and those operating through the eIF2α kinases. Studies from several organisms indicate that the two pathways are interlinked, in that Tor complex 1 (TORC1) negatively regulates the Gcn2 kinase. Furthermore, inactivation of TORC1 may be required for activation of Gcn2 in response to stress. Here, we use the model organism Schizosaccharomyces pombe to investigate this crosstalk further. We find that the relationship is more complex than previously thought. First, in response to UV irradiation and oxidative stress, Gcn2 is fully activated in the presence of TORC1 signaling. Second, during amino-acid starvation, activation of Gcn2 is dependent on Tor2 activity, and Gcn2 is required for timely inactivation of the Tor pathway. Our data show that the crosstalk between the two pathways varies with the actual stress applied.

DOI: 10.4161/cc.27270
PubMed: 24280780
PubMed Central: PMC3956541


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crosstalk between the Tor and Gcn2 pathways in response to different stresses.</title>
<author>
<name sortKey="R Dland, Gro Elise" sort="R Dland, Gro Elise" uniqKey="R Dland G" first="Gro Elise" last="R Dland">Gro Elise R Dland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tveg Rd, Tonje" sort="Tveg Rd, Tonje" uniqKey="Tveg Rd T" first="Tonje" last="Tveg Rd">Tonje Tveg Rd</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Boye, Erik" sort="Boye, Erik" uniqKey="Boye E" first="Erik" last="Boye">Erik Boye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Institute for Molecular Biosciences; University of Oslo; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Institute for Molecular Biosciences; University of Oslo; Oslo</wicri:regionArea>
<wicri:noRegion>Norway; Institute for Molecular Biosciences; University of Oslo; Oslo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grallert, Beata" sort="Grallert, Beata" uniqKey="Grallert B" first="Beáta" last="Grallert">Beáta Grallert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24280780</idno>
<idno type="pmid">24280780</idno>
<idno type="doi">10.4161/cc.27270</idno>
<idno type="pmc">PMC3956541</idno>
<idno type="wicri:Area/Main/Corpus">000F28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F28</idno>
<idno type="wicri:Area/Main/Curation">000F28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F28</idno>
<idno type="wicri:Area/Main/Exploration">000F28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crosstalk between the Tor and Gcn2 pathways in response to different stresses.</title>
<author>
<name sortKey="R Dland, Gro Elise" sort="R Dland, Gro Elise" uniqKey="R Dland G" first="Gro Elise" last="R Dland">Gro Elise R Dland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tveg Rd, Tonje" sort="Tveg Rd, Tonje" uniqKey="Tveg Rd T" first="Tonje" last="Tveg Rd">Tonje Tveg Rd</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Boye, Erik" sort="Boye, Erik" uniqKey="Boye E" first="Erik" last="Boye">Erik Boye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Institute for Molecular Biosciences; University of Oslo; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Institute for Molecular Biosciences; University of Oslo; Oslo</wicri:regionArea>
<wicri:noRegion>Norway; Institute for Molecular Biosciences; University of Oslo; Oslo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grallert, Beata" sort="Grallert, Beata" uniqKey="Grallert B" first="Beáta" last="Grallert">Beáta Grallert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Eukaryotic Initiation Factor-2 (metabolism)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Starvation (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Ultraviolet Rays (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Facteur-2 d'initiation eucaryote (métabolisme)</term>
<term>Inanition (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Rayons ultraviolets (MeSH)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Eukaryotic Initiation Factor-2</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
<term>Starvation</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Facteur-2 d'initiation eucaryote</term>
<term>Inanition</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidative Stress</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Ultraviolet Rays</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phosphorylation</term>
<term>Rayons ultraviolets</term>
<term>Stress oxydatif</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Regulating growth and the cell cycle in response to environmental fluctuations is important for all organisms in order to maintain viability. Two major pathways for translational regulation are found in higher eukaryotes: the Tor signaling pathway and those operating through the eIF2α kinases. Studies from several organisms indicate that the two pathways are interlinked, in that Tor complex 1 (TORC1) negatively regulates the Gcn2 kinase. Furthermore, inactivation of TORC1 may be required for activation of Gcn2 in response to stress. Here, we use the model organism Schizosaccharomyces pombe to investigate this crosstalk further. We find that the relationship is more complex than previously thought. First, in response to UV irradiation and oxidative stress, Gcn2 is fully activated in the presence of TORC1 signaling. Second, during amino-acid starvation, activation of Gcn2 is dependent on Tor2 activity, and Gcn2 is required for timely inactivation of the Tor pathway. Our data show that the crosstalk between the two pathways varies with the actual stress applied. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24280780</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>Crosstalk between the Tor and Gcn2 pathways in response to different stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>453-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/cc.27270</ELocationID>
<Abstract>
<AbstractText>Regulating growth and the cell cycle in response to environmental fluctuations is important for all organisms in order to maintain viability. Two major pathways for translational regulation are found in higher eukaryotes: the Tor signaling pathway and those operating through the eIF2α kinases. Studies from several organisms indicate that the two pathways are interlinked, in that Tor complex 1 (TORC1) negatively regulates the Gcn2 kinase. Furthermore, inactivation of TORC1 may be required for activation of Gcn2 in response to stress. Here, we use the model organism Schizosaccharomyces pombe to investigate this crosstalk further. We find that the relationship is more complex than previously thought. First, in response to UV irradiation and oxidative stress, Gcn2 is fully activated in the presence of TORC1 signaling. Second, during amino-acid starvation, activation of Gcn2 is dependent on Tor2 activity, and Gcn2 is required for timely inactivation of the Tor pathway. Our data show that the crosstalk between the two pathways varies with the actual stress applied. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rødland</LastName>
<ForeName>Gro Elise</ForeName>
<Initials>GE</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tvegård</LastName>
<ForeName>Tonje</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boye</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Institute for Molecular Biosciences; University of Oslo; Oslo, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grallert</LastName>
<ForeName>Beáta</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015852">Eukaryotic Initiation Factor-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C539007">Gcn2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015852" MajorTopicYN="N">Eukaryotic Initiation Factor-2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013217" MajorTopicYN="N">Starvation</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014466" MajorTopicYN="N">Ultraviolet Rays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gcn2</Keyword>
<Keyword MajorTopicYN="N">S. pombe</Keyword>
<Keyword MajorTopicYN="N">Tor</Keyword>
<Keyword MajorTopicYN="N">UV irradiation</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">starvation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24280780</ArticleId>
<ArticleId IdType="pii">27270</ArticleId>
<ArticleId IdType="doi">10.4161/cc.27270</ArticleId>
<ArticleId IdType="pmc">PMC3956541</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2009 Aug;29(16):4584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Oct 15;14 Spec No. 2:R251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Aug;15(8):4497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7623840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6361-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19417002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Mar 15;21(6):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18717-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Nov;269(22):5338-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Feb 2;25(5):657-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16170341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 15;125(Pt 24):5955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23108671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Sep 15;1(9):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2011 Mar;60(3):746-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jun 15;16(12):1472-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):24736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jun;269(11):2810-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12047392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Dec 15;121(Pt 24):4047-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):1867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Jul 15;126(Pt 14):3010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23687372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2012 Aug;23(6):621-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22342805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2010 Jan;9(1):194-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2009 Aug 7;38(3):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19509078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Oct;10(2):215-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7934812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 1999 Jan;31(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10216940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="R Dland, Gro Elise" sort="R Dland, Gro Elise" uniqKey="R Dland G" first="Gro Elise" last="R Dland">Gro Elise R Dland</name>
</noRegion>
<name sortKey="Boye, Erik" sort="Boye, Erik" uniqKey="Boye E" first="Erik" last="Boye">Erik Boye</name>
<name sortKey="Grallert, Beata" sort="Grallert, Beata" uniqKey="Grallert B" first="Beáta" last="Grallert">Beáta Grallert</name>
<name sortKey="Tveg Rd, Tonje" sort="Tveg Rd, Tonje" uniqKey="Tveg Rd T" first="Tonje" last="Tveg Rd">Tonje Tveg Rd</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24280780
   |texte=   Crosstalk between the Tor and Gcn2 pathways in response to different stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24280780" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020